2024
- Yang Pei, Yong Ma, Xiaoguang Mei*, Qihai Chen, Minghui Wu, and Jiayi Ma. “Deep Blind Super-Resolution for Hyperspectral Images.” Pattern Recognition 157 (January 2025): 110916. https://doi.org/10.1016/j.patcog.2024.110916.
- Yu, Yang, Erting Pan, Yong Ma, Xiaoguang Mei*, Qihai Chen, and Jiayi Ma. “UnmixDiff: Unmixing-Based Diffusion Model for Hyperspectral Image Synthesis.” IEEE Transactions on Geoscience and Remote Sensing 62 (2024): 1–18. https://doi.org/10.1109/tgrs.2024.3425517.
- Pan, Erting, Yang Yu, Xiaoguang Mei, Jun Huang, and Jiayi Ma. “From the Abundance Perspective: Multi-Modal Scene Fusion-Based Hyperspectral Image Synthesis.” Information Fusion 108 (2024): 102419.
- Yantao Chen, Yong Ma, Xiaoguang Mei, Lin Zhang, Zhigang Fu, and Jiayi Ma. “Triple-Task Mutual Consistency for Semi-Supervised 3D Medical Image Segmentation.” Computers in Biology and Medicine, 2024.
- Yingsong Cheng, Xinya Wang, Yong Ma, Xiaoguang Mei*, Minghui Wu, and Jiayi Ma. “General Hyperspectral Image Super-Resolution via Meta-Transfer Learning.” IEEE Transactions on Neural Networks and Learning Systems, 2024.
- Wendi Liu, Yong Ma, Xiaozhu Wang, Jun Huang, Qihai Chen, Hao Li, Xiaoguang Mei*, “UADNet: A Joint Unmixing and Anomaly Detection Network Based on Deep Clustering for Hyperspectral Image,” in IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2024.33759341.
- Yifan Lu, Jiayi Ma, Xiaoguang Mei, Jun Huang, Xiao-Ping (Steven) Zhang, Feature Matching via Topology-Aware Graph Interaction Model. IEEE CAA J. Autom. Sinica 11(1): 113-130 (2024)
- Yang Yu, Erting Pan, Xinya Wang, Yuheng Wu, Xiaoguang Mei*, Jiayi Ma, Unmixing before Fusion: A Generalized Paradigm for Multi-modality-based Hyperspectral Image Synthesis, The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024, Seattle, USA, 2024
- Hebaixu Wang, Meiqi Gong, Xiaoguang Mei, Hao Zhang, and Jiayi Ma. “Deep Unfolded Network with Intrinsic Supervision for Pan-Sharpening”, Proceedings of the AAAI Conference on Artificial Intelligence 38.6 (AAAI 2024): 5419-5426.
- Cai, Zhao, Yong Ma, Jun Huang, Xiaoguang Mei, Fan Fan, and Zhiqing Zhao. “CMFuse: Cross-Modal Features Mixing via Convolution and MLP for Infrared and Visible Image Fusion.” IEEE Sensors Journal 24, no. 15 (August 1, 2024): 24152–67. https://doi.org/10.1109/jsen.2024.3410387.
- 柴静雯, 李安康, 张浩, 马泳, 梅晓光, & 马佳义. (2024). 结合局部全局特征与多尺度交互的三维多器官分割网络. 中国图象图形学报, 29(3), 655-669.
2023
- Pan, E., Ma, Y., Mei, X., Huang, J., Chen, Q., & Ma, J. (2023). Hyperspectral image destriping and denoising from a task decomposition view. Pattern Recognition, 109832.
- Liu, W., Mei, X., Ma, Y., Huang, J., Chen, Q., & Li, H. (2023). Graph L1-Laplacians Regularized GMM for Hyperspectral Unmixing. IEEE Geoscience and Remote Sensing Letters.
- Pan, E., Ma, Y., Mei, X.*, Fan, F., Huang, J., & Ma, J. (2023). Progressive Hyperspectral Image Destriping with an Adaptive Frequencial Focus. IEEE Transactions on Geoscience and Remote Sensing.
- Chu, M., Ma, Y., Mei, X., Huang, J., & Fan, F. (2023). Learning-based correspondence classifier with self-attention hierarchical network. Applied Intelligence, 1-17.
- W. Dong, Y. Chen, A. Li, X. Mei & Y. Yang, “Automatic detection of adenoid hypertrophy on cone-beam computed tomography based on deep learning,” American Journal of Orthodontics and Dentofacial Orthopedics, 163(4), 553-560, 2023 (On the cover)
- Pan, E., Ma, Y., Mei, X., Fan, F., & Ma, J. (2023). Hyperspectral image denoising via spectral noise distribution bootstrap. Pattern Recognition, 142, 109699.
- Li, Z., Ma, Y., Mei, X., & Ma, J. (2023). Two-view correspondence learning using graph neural network with reciprocal neighbor attention. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 114-124.
- Peng, Z., Ma, Y., Zhang, Y., Li, H., Fan, F., & Mei, X. (2023). Seamless UAV hyperspectral image stitching using optimal seamline detection via graph cuts. IEEE Transactions on Geoscience and Remote Sensing.
- Cai, Z., Ma, Y., Huang, J., Mei, X., & Fan, F. (2023). Correlation-Guided Discriminative Cross-Modality Features Network for Infrared and Visible Image Fusion. IEEE Transactions on Instrumentation and Measurement.
- Sun, Y., Xu, H., Ma, Y., Wu, M., Mei, X., Huang, J., & Ma, J. (2023). Dual Spatial-spectral Pyramid Network with Transformer for Hyperspectral Image Fusion. IEEE Transactions on Geoscience and Remote Sensing.
- 靳淇文, 马泳, 樊凡, 黄珺, 李皞, & 梅晓光. (2023). 生成对抗网络的无监督高光谱解混. Journal of Remote Sensing, 27(8).
2022
- A. Fan, J. Ma, X. Tian, X. Mei, W. Liu,”Coherent Point Drift Revisited for Non-Rigid Shape Matching and Registration,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
- 徐涵, 梅晓光*, 樊凡, 马泳, & 马佳义, 信息分离和质量引导的红外与可见光图像融合, 中国图象图形学报, 27(11), 3316-3330, 2022
- X. Wang, Y. Cheng, X. Mei, J. Jiang and J. Ma, “Group Shuffle and Spectral-Spatial Fusion for Hyperspectral Image Super-Resolution,” in IEEE Transactions on Computational Imaging, vol. 8, pp. 1223-1236, 2022
- E. Pan, Y. Ma, X. Mei*, J. Huang, F. Fan and J. Ma, “Letter: D2Net: Deep denoising network in frequency domain for hyperspectral image,” in IEEE/CAA Journal of Automatica Sinica
- H. Xu, Y. Sun, X. Mei, X. Tian and J. Ma, “Attention-Guided Polarization Image Fusion Using Salient Information Distribution,” in IEEE Transactions on Computational Imaging, vol. 8, pp. 1117-1130, 2022
- Y. Yao, M. Wang, G. Fan, W. Liu, Y. Ma, X. Mei, “Dictionary Learning-Cooperated Matrix Decomposition for Hyperspectral Target Detection. Remote Sensing,” 14(17), 4369, 2022
- Y. Yu, Y. Ma, X. Mei*, F. Fan, J. Huang, H. Li, “Multi-stage convolutional autoencoder network for hyperspectral unmixing. International Journal of Applied Earth Observation and Geoinformation,” 113, 102981, 2022
- S. Mei, Y. Ma, X. Mei, J. Huang, F. Fan, “S2-Net: Self-Supervision Guided Feature Representation Learning for Cross-Modality Images. IEEE/CAA Journal of Automatica Sinica,” 9(10), 1883-1885, 2022
- Y. Zhang, X. Mei, Y. Ma, X. Jiang, Z. Peng, J. Huang, “Hyperspectral Panoramic Image Stitching Using Robust Matching and Adaptive Bundle Adjustment,” Remote Sensing, 4(16): 4038, 2022
- Z. Le, J. Huang, H. Xu, F. Fan, Y. Ma, X. Mei, J. Ma, “UIFGAN: An unsupervised continual-learning generative adversarial network for unified image fusion,” Information Fusion, 2022
- Z. Li, Y. Ma, X. Mei, J. Huang and J. Ma, “Guided neighborhood affine subspace embedding for feature matching,” Pattern Recogn., vol. 124, pp. 108489, 2022
- Q. Jin, Y. Ma, X. Mei* and J. Ma, “TANet: An Unsupervised Two-Stream Autoencoder Network for Hyperspectral Unmixing,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-15, 2022.
- E. Pan, Y. Ma, X. Mei*, F. Fan, J. Huang and J. Ma, “SQAD: Spatial-Spectral Quasi-Attention Recurrent Network for Hyperspectral Image Denoising,” IEEE T. Geosci. Remote, vol. 60, pp. 1-14, 2022
- J. Ma, L. Tang, F. Fan, J. Huang, X. Mei, Y. Ma, “SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer,” IEEE/CAA Journal of Automatica Sinica, 9(7), 1200-1217, 2022. Hsue-shen Tsien Paper Award(钱学森论文奖,IEEE/CAA JAS唯一最佳论文奖) 🔥🔥
- Zhao-bing Qiu, Yong Ma, Fan Fan, Jun Huang, Ming-hui Wu, Xiao-guang Mei, A pixel-level local contrast measure for infrared small target detection, Defence Technology, Volume 18, Issue 9, 2022, Pages 1589-1601,
- 樊港辉, 马泳, 梅晓光*, 黄珺, 樊凡, & 李皞. 空域协同自编码器的高光谱异常检测. 中国图象图形学报, 27(10): 3116-3126, 2022
- C. Ma, J. Jiang, H. Li, X. Mei & C. Bai, “Hyperspectral Image Classification via Spectral Pooling and Hybrid Transformer. Remote Sensing,” 14(19), 4732, 2022
2021
- 徐涵, 梅晓光*, 樊凡, 马泳 and 马佳义, “分离表征和指标驱动的红外可见光图像融合,” 中国图象图形学报, 2021.
- Y. Zhang, Y. Ma, X. Dai, H. Li, X. Mei* and J. Ma, “Locality-constrained sparse representation for hyperspectral image classification,” Inform. Sciences, vol. 546, pp. 858-870, 2021.
- C. Sui, J. Zhou, C. Li, Q. Zhang, J. Feng, X. Mei, J. Wang, “Unsupervised hyperspectral band selection with multigraph integrated embedding and robust self-contained regression,” IEEE T. Geosci. Remote, vol. 60, pp. 1-15, 2021.
- E. Pan, Y. Ma, F. Fan, X. Mei and J. Huang, “Hyperspectral Image Classification across Different Datasets: A Generalization to Unseen Categories,” Remote Sens.-Basel, vol. 13, no. 9, pp. 1672, 2021.
- J. Ma, X. Ye, H. Zhou, X. Mei and F. Fan, “Loop-closure detection using local relative orientation matching,” IEEE T. Intell. Transp., 2021.
- Z. Qiu, Y. Ma, F. Fan, J. Huang, M. Wu and X. Mei, “A pixel-level local contrast measure for infrared small target detection,” Defence Technology, 2021.
- G. Fan, Y. Ma, X. Mei*, F. Fan, J. Huang and J. Ma, “Hyperspectral anomaly detection with robust graph autoencoders,” IEEE T. Geosci. Remote, 2021. (ESI Highly Cited Paper) 🔥🔥
- H. Li, Y. Zhang, Y. Ma, X. Mei, S. Zeng and Y. Li, “Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification,” Entropy-Switz., vol. 23, no. 8, pp. 956, 2021.
- Z. Peng, Y. Ma, X. Mei*, J. Huang and F. Fan, “Hyperspectral Image Stitching via Optimal Seamline Detection,” IEEE Geosci. Remote S., vol. 19, pp. 1-5, 2021.
- Q. Jin, Y. Ma, F. Fan, J. Huang, X. Mei* and J. Ma, “Adversarial Autoencoder Network for Hyperspectral Unmixing,” IEEE T. Neur. Net. Lear., 2021.
- J. Ma, S. Wang, K. Zhang, Z. He, J. Huang and X. Mei, “Fast and Robust Loop-closure Detection via Convolutional Auto-encoder and Motion Consensus,” IEEE T. Ind. Inform., 2021.
- A. Fan, X. Jiang, Y. Ma, X. Mei and J. Ma, “Smoothness-Driven Consensus Based on Compact Representation for Robust Feature Matching,” IEEE T. Neur. Net. Lear., 2021.
- Y. Yu, Y. Ma, X. Mei, F. Fan, J. Huang and J. Ma, “A Spatial-Spectral Feature Descriptor for Hyperspectral Image Matching,” Remote Sens.-Basel, vol. 13, no. 23, pp. 4912, 2021.
- G. Fan, Y. Ma, J. Huang, X. Mei, and J. Ma, “Robust graph autoencoder for hyperspectral anomaly detection,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 1830–1834.
- Q. Jin, Y. Ma, X. Mei, H. Li, and J. Ma, “Utdn: An unsupervised two-stream dirichlet-net for hyperspectral unmixing,” in ICASSP 2021- 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 1885–1889.
- E. Pan, Y. Ma, X. Mei, F. Fan, and J. Ma, “Unsupervised stacked capsule autoencoder for hyperspectral image classification,” in ICASSP 2021- 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 1825–1829.
- K. Zhang, X. Jiang, X. Mei, H. Zhou, and J. Ma, “Motion field consensus with locality preservation: A geometric confirmation strategy for loop closure detection,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 445–451.
2020
- J. Chen, X. Li, L. Luo, X. Mei* and J. Ma, “Infrared and visible image fusion based on target-enhanced multiscale transform decomposition,” Inform. Sciences, vol. 508, pp. 64-78, 2020. (ESI Highly Cited Paper) 🔥🔥
- E. Pan, X. Mei, Q. Wang, Y. Ma and J. Ma, “Spectral-spatial classification for hyperspectral image based on a single GRU,” Neurocomputing, vol. 387, pp. 150-160, 2020.
- J. Ma, H. Xu, J. Jiang, X. Mei* and X. Zhang, “DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion,” IEEE T. Image Process., vol. 29, pp. 4980-4995, 2020. (ESI Highly Cited Paper) 🔥🔥
- J. Huang, Z. Le, Y. Ma, X. Mei and F. Fan, “A generative adversarial network with adaptive constraints for multi-focus image fusion,” Neural Computing and Applications, vol. 32, no. 18, pp. 15119-15129, 2020.
- Y. Wang, X. Mei, Y. Ma, J. Huang, F. Fan and J. Ma, “Learning to find reliable correspondences with local neighborhood consensus,” Neurocomputing, vol. 406, pp. 150-158, 2020.
- M. Wu, Y. Ma, F. Fan, X. Mei and J. Huang, “Infrared and visible image fusion via joint convolutional sparse representation,” JOSA A, vol. 37, no. 7, pp. 1105-1115, 2020.
- Y. Zhang, Z. Wan, X. Jiang and X. Mei*, “Automatic stitching for hyperspectral images using robust feature matching and elastic warp,” Ieee J.-Stars, vol. 13, pp. 3145-3154, 2020.
- Y. Ma, G. Fan, Q. Jin, J. Huang, X. Mei and J. Ma, “Hyperspectral anomaly detection via integration of feature extraction and background purification,” IEEE Geosci. Remote S., vol. 18, no. 8, pp. 1436-1440, 2020.
2019
- J. Wang, J. Chen, H. Xu, S. Zhang, X. Mei*, J. Huang, J. Ma, “Gaussian field estimator with manifold regularization for retinal image registration,” Signal Process., vol. 157, pp. 225-235, 2019.
- Y. Ma, Y. Wang, X. Mei, C. Liu, X. Dai, F. Fan, J. Huang, “Visible/infrared combined 3D reconstruction scheme based on nonrigid registration of multi-modality images with mixed features,” IEEE Access, vol. 7, pp. 19199-19211, 2019.
- Y. Ma, Q. Jin, X. Mei*, X. Dai, F. Fan, H. Li, J. Huang, “Hyperspectral unmixing with Gaussian mixture model and low-rank representation,” Remote Sens.-Basel, vol. 11, no. 8, pp. 911, 2019.
- X. Mei, E. Pan, Y. Ma, X. Dai, J. Huang, F. Fan, Q. Du, H. Zheng, J. Ma, “Spectral-spatial attention networks for hyperspectral image classification,” Remote Sens.-Basel, vol. 11, no. 8, pp. 963, 2019. (ESI Highly Cited Paper) 🔥🔥
- Q. Jin, Y. Ma, E. Pan, F. Fan, J. Huang, H. Li, C. Sui, X. Mei*, “Hyperspectral unmixing with Gaussian mixture model and spatial group sparsity,” Remote Sens.-Basel, vol. 11, no. 20, pp. 2434, 2019.
- C. Sui, C. Li, J. Feng and X. Mei, “Unsupervised manifold-preserving and weakly redundant band selection method for hyperspectral imagery,” IEEE T. Geosci. Remote, vol. 58, no. 2, pp. 1156-1170, 2019.
- Y. Ma, Y. Zhang, X. Mei*, X. Dai and J. Ma, “Multifeature-based discriminative label consistent k-svd for hyperspectral image classification,” Ieee J.-Stars, vol. 12, no. 12, pp. 4995-5008, 2019.
- J. Ma, X. Wang, Y. He, X. Mei and J. Zhao, “Line-based stereo slam by junction matching and vanishing point alignment,” IEEE Access, vol. 7, pp. 181800-181811, 2019.
- L. Luo, Q. Wan, J. Chen, Y. Wang, and X. Mei, “Drone image stitching guided by robust elastic warping and locality preserving matching,” in IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019, pp. 9212–9215.
- E. Pan, Y. Ma, X. Dai, F. Fan, J. Huang, X. Mei, and J. Ma, “GRU with spatial prior for hyperspectral image classification,” in IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019, pp. 967–970.
- Q. Jin, Y. Ma, X. Mei, X. Dai, H. Li, F. Fan, and J. Huang, “Gaussian mixture model for hyperspectral unmixing with low-rank representation,” in IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019, pp. 294–297.
- E. Pan, Y. Ma, X. Mei, X. Dai, F. Fan, X. Tian, and J. Ma, “Spectral-spatial classification of hyperspectral image based on a joint attention network,” in IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019, pp. 413–416.
2018
- X. Mei, Y. Ma, C. Li, F. Fan, J. Huang and J. Ma, “Robust GBM hyperspectral image unmixing with superpixel segmentation based low rank and sparse representation,” Neurocomputing, vol. 275, pp. 2783-2797, 2018.
- Y. Ma, C. Li, H. Li, X. Mei and J. Ma, “Hyperspectral image classification with discriminative kernel collaborative representation and Tikhonov regularization,” IEEE Geosci. Remote S., vol. 15, no. 4, pp. 587-591, 2018.
- Q. Du, A. Fan, Y. Ma, F. Fan, J. Huang and X. Mei*, “Infrared and visible image registration based on scale-invariant piifd feature and locality preserving matching,” IEEE Access, vol. 6, pp. 64107-64121, 2018.
2017
- F. Fan, Y. Ma, C. Li, X. Mei, J. Huang and J. Ma, “Hyperspectral image denoising with superpixel segmentation and low-rank representation,” Inform. Sciences, vol. 397, pp. 48-68, 2017.
- H. Guo, Y. Ma, X. Mei* and J. Ma, “Infrared and visible image fusion based on total variation and augmented Lagrangian,” JOSA A, vol. 34, no. 11, pp. 1961-1968, 2017. (Editors' Pick) 🔥🔥
- Y. Ma, J. Wang, H. Xu, S. Zhang, X. Mei and J. Ma, “Robust image feature matching via progressive sparse spatial consensus,” IEEE Access, vol. 5, pp. 24568-24579, 2017.
- C. Li, Y. Ma, X. Mei*, F. Fan, J. Huang and J. Ma, “Sparse unmixing of hyperspectral data with noise level estimation,” Remote Sens.-Basel, vol. 9, no. 11, pp. 1166, 2017. (code)
- Y. Ma, C. Li, X. Mei*, C. Liu and J. Ma, “Robust Sparse Hyperspectral Unmixing With $\ell_ {2, 1} $ Norm,” IEEE T. Geosci. Remote, vol. 55, no. 3, pp. 1227-1239, 2017. (code)
2016
- C. Li, Y. Ma, J. Huang, X. Mei, C. Liu and J. Ma, “GBM-based unmixing of hyperspectral data using bound projected optimal gradient method,” IEEE Geosci. Remote S., vol. 13, no. 7, pp. 952-956, 2016.
- C. Li, Y. Ma, X. Mei, C. Liu and J. Ma, “Hyperspectral image classification with robust sparse representation,” IEEE Geosci. Remote S., vol. 13, no. 5, pp. 641-645, 2016.
- J. Han, Y. Ma, J. Huang, X. Mei and J. Ma, “An infrared small target detecting algorithm based on human visual system,” IEEE Geosci. Remote S., vol. 13, no. 3, pp. 452-456, 2016.
- C. Li, Y. Ma, X. Mei, C. Liu and J. Ma, “Hyperspectral unmixing with robust collaborative sparse regression,” Remote Sens.-Basel, vol. 8, no. 7, pp. 588, 2016.
- J. Huang, Y. Ma, X. Mei, F. Fan, “A Hybrid Spatial-Spectral Denoising Method for Infrared Hyperspectral Images Using 2DPCA,” Infrared Phys. Techn., 2016.
2015
- T. Tian, X. Mei, Y. Yu, C. Zhang and X. Zhang, “Automatic visible and infrared face registration based on silhouette matching and robust transformation estimation,” Infrared Phys. Techn., vol. 69, pp. 145-154, 2015.
- X. Mei, Y. Ma, C. Li, F. Fan, J. Huang and J. Ma, “A real-time infrared ultra-spectral signature classification method via spatial pyramid matching,” Sensors-Basel, vol. 15, no. 7, pp. 15868-15887, 2015.
- C. Li, Y. Ma, J. Huang, X. Mei and J. Ma, “Hyperspectral image denoising using the robust low-rank tensor recovery,” JOSA A, vol. 32, no. 9, pp. 1604-1612, 2015.
- J. Huang, Y. Ma, F. Fan, X. Mei and Z. Liu, “A scene-based nonuniformity correction algorithm based on fuzzy logic,” Opt. Rev., vol. 22, no. 4, pp. 614-622, 2015.
- X. Mei, Y. Ma, F. Fan, C. Li, C. Liu, J. Huang, J. Ma, “Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints,” Int. J. Remote Sens., vol. 36, no. 18, pp. 4724-4747, 2015.
2013
- B. Zhou, S. Wang, Y. Ma, X. Mei, B. Li, H. Li, F. Fan, “An infrared image impulse noise suppression algorithm based on fuzzy logic,” Infrared Phys. Techn., vol. 60, pp. 346-358, 2013.